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Abstract. We investigate mesoscopic spin transport through a quantum dot (QD) responded by a rotating
and an oscillating magnetic fields. The rotating magnetic field rotates with the angular frequency ω0 around
the z-axis with the tilt angle θ, while the time-oscillating magnetic field is located in the z-axis with the
angular frequency ω. The spin flip is caused by the rotating magnetic field, and it is the major source
of spin current. The Zeeman effect is contributed by the two field components, and it is important as
the magnetic fields are strong. The oscillating magnetic field takes significant role due to the spin-photon
pumping effect, and the spin current can be generated by it even as ω0 → 0 for the tilt angle θ �= 0. The
peak and valley structure appears with respect to the frequency ω of oscillating field. The generation of
spin current is companying with charge current. Spin current displays quite different appearance between
the cases in the absence of source-drain bias (eV = 0) and in the presence of source-drain bias (eV �= 0).
The symmetric spin current disappears to form asymmetric spin current with a negative valley and a
positive plateau. The charge current is mainly determined by the source-drain bias, photon absorption,
and spin-flip effect. This system can be employed as an ac charge-spin current generator, or ac charge-spin
field effect transistor.

PACS. 85.35.-p Nanoelectronic devices – 73.23.-b Electronic transport in mesoscopic systems –
72.25.Mk Spin transport through interfaces – 73.21.La Quantum dots

1 Introduction

Spintronics is one of the most attractive investigation fron-
tier both for the theoretical and experimental aspects due
to the potential application of nano-devices. The spin po-
larized resonant transport through a ferromagnetic film
enhances the nonequilibrium spin population due to the
spin accumulation [1,2]. The concept of spin coherent field
effect transistor was proposed associated with the spin
precession due to the spin-orbit coupling in narrow-gap
semiconductors [3]. These could make us to consider the
application of spin degree of freedom analog to the charge
transport. Recent experiments on the control and ma-
nipulation of spin made it possible for the application
of spintronic nano-devices [4,5]. The time-resolved opti-
cal Faraday rotation measurements demonstrated the co-
herent spontaneous electron spin and large nuclear mag-
netic fields in the ferromagnet-semiconductor system [6].
A theory of generation of the electron spin coherence and
population in an n-doped ferromagnet-semiconductor sys-
tem has been presented [7]. The spin-current circuit and
generator phenomena are also proposed to develop the
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spintronics, such as the spin-battery proposals [8–10]. The
conductance through a local nuclear spin precessing in a
magnetic field has been studied, and the conductance os-
cillation is found due to the spin-flip coupling between
the electrons on the spin site and the leads. The conduc-
tance oscillation is composed of ωL and 2ωL components
of oscillations, where ωL is the Larmor frequency [11]. In
reference [12], the spin field effect transistor (SFET) is
presented to be induced by a rotating external magnetic
field without involving magnetic materials. The generated
spin current is tunable by the gate voltage. As the source-
drain bias is removed, the charge current is zero, but the
spin current is nonzero. This can make us to operate the
spin current purely. The mechanism of the spin current
generation is the spin-flip effect of the local electron in
the quantum dot (QD).

In this paper, we deal with the spin and charge trans-
ports through a quantum dot applied with a rotating mag-
netic field B0 and an oscillating magnetic field B1. The
spin-flip is induced by the applied tilting magnetic field
which is also rotating around the z-axis. The Zeeman split
provides novel channels for electron to tunnel in addition
to the original channels of QD. The coupling of spin-up
and spin-down components causes novel transport in the
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nonmagnetic material system. The off-diagonal elements
of Green’s function in spin space are resulted from spin-
flip effect, which induces the spin current in the presence
of rotating magnetic field. The oscillating magnetic field is
a non-collinear magnetic field with the rotating magnetic
field, and it is physically interesting to see the compound
effects caused by these magnetic fields. The spin-flip effect
may cause asymmetric effect, and the oscillating magnetic
field induces novel side-bands. The pumped electrons form
photon-assisted spin and charge currents. The mesoscopic
tunnelling is therefore controlled by the external rotat-
ing and oscillating magnetic fields, which can make us to
consider oscillating field effect spin-charge devices. Sec-
tion 2 presents the system formalism and formula deriva-
tion. The Landauer-Büttiker-like formula is given there.
Numerical calculations are performed in Section 3. Charge
and spin currents are displayed as the source-drain bias is
zero and nonzero. Brief discussion and concluding remarks
are arranged in the final section.

2 Hamiltonian and formalism

The rotating magnetic field rotates with the angu-
lar frequency ω0 around the z-axis with the tilt an-
gle θ, and the azimuthal angle ϕ(t) = ω0t, i.e., B0 =
B0(sin θ cosϕ(t)ex + sin θ sin ϕ(t)ey + cos θez). The time-
oscillating magnetic field B1 located in the z-axis is de-
fined as B1(t) = B1 cos(ωt)ez, where ω is the angular
frequency of the oscillating magnetic field. The total mag-
netic field applied to the QD is B = B0 +B1. We consider
the single level QD system, and neglect the intra-dot elec-
tron interaction. The Hamiltonian of our system is given
as

H =
∑

γkσ

εγ,kσc†γ,kσcγ,kσ +
∑

σσ′
d†σΩσσ′(t)dσ′

+
∑

σ

Ẽσ(t)d†σdσ +
∑

γkσ

(Vγkc†γ,kσdσ + H.c.), (1)

where

Ω(t) = γ0

(
cos θ, sin θe−iϕ(t)

sin θeiϕ(t), − cos θ

)
, (2)

and Ẽσ(t) = Eσ + µ ·B1(t), Eσ = E
(0)
σ + eVg, γ0 = µ0B0.

The operators c†γ,kσ (cγ,kσ), and d†σ (dσ) are the creation
(annihilation) operators of electron in the two leads and
the central QD, respectively. In the Hamiltonian, E

(0)
σ is

the energy level of QD in the absence of magnetic field,
Vg is the gate voltage, and µ · B1(t) is the Zeeman en-
ergy. εγ,kσ is the energy of electron in the γth lead, and
it is spin degenerate. The magnetic moment of the �/2
particle is µ = µ0σ, µ0 = gµB/2, where g is the gyro-
magnetic ratio, µB is the Bohr magneton, and σ is the
Pauli operator. Therefore, Ẽσ(t) = Eσ + λσµ0B1 cos(ωt),
where λσ is eigenvalue of the Pauli operator σZ , and it
takes the values ±1 for spin-up and spin-down situations.

The magnetic field B(t) induces three effects: the spin-
flip; the oscillation of phase factor; the Zeeman splitting
of energy levels. This system corresponds to the one that
the QD is connected to two electrodes, and the spin-flip
effect takes place due the magnetic field B0.

In order to handle the problem conveniently, we
make the gauge transformation for the wave function
Ψ(t) = Û(t)Ψ̃(t), and Hamiltonian H̃ = Û(t)−1HÛ(t)
in the Schrödinger equation. The unitary operator is de-
fined by Û(t) = exp[−iΛ

∑
σ λσ sin(ωt)d†σdσ], where Λ =

µ0B1/�ω. From the unitary transformation, we can re-
move the time-oscillating Zeeman energy into the interac-
tion terms, and get the transformed Hamiltonian

H̃ =
∑

γkσ

εγ,kσc†γ,kσcγ,kσ +
∑

σσ′
d†σΩ̃σσ′ (t)dσ′

+
∑

σ

Eσd†σdσ +
∑

γkσ

[Ṽγk,σ(t)c†γ,kσdσ + H.c.]. (3)

In the Hamiltonian (3), the interaction strengths are
changed to the time-dependent ones as Ṽγk,σ(t) =
Vγk exp[−iλσΛ sin(ωt)]. The matrix Ω̃(t) takes the form
as in equation (2), but with the transformation as ϕ(t) →
ϕ̃(t) = ω0t + α1 sin(ωt), where α1 = 2Λ.

The spin current can be derived from the motion of
spin operator of lead in the second quantization picture
for our system. We define the spin operator of the αth
lead as Ŝα,µν = �

2

∑
k c†α,kµcα,kνσµν , and the spin opera-

tor of the central QD as Ŝµν = �

2d†µdνσµν , where σµν is
the Pauli operator matrix, and µ, ν are the spin indices. In
the presence of spin-flip effect, the spin current is not con-
served, and the usual derivation from Heisenberg equation
results in additional term. Detailed discussions are given in
the papers where the Rashba spin-orbit interaction effects
are analyzed [13,14]. Experimentally, the spin current is
measured in the leads by injecting spin-up and spin-down
electrons. In our system, the spin current in a lead can
be derived through equation of motion of spin operator
in the lead Ŝγ,µν , since there is no spin-flip, or spin-orbit
interaction in the leads. This means that there is no spin
generation in the leads, and the continuity equation gives
∂Ŝγ,µν/∂t+ Îγ,µν(t)sµν = 0, where s = �σ/2, and Îγ,µν(t)
is the current operator in the γth lead associated with spin
indices µ, ν defined by

Îγ,µν(t) =
i

�

∑

k

[
Ṽγk,νc†γ,kµ(t)dν(t) − Ṽ ∗

γk,µd†µ(t)cγ,kν(t)
]
.

(4)
The current is determined by taken the expectation value
over quantum state and grand canonical ensemble expec-
tation, i.e., Iγ,µν(t) = 〈Îγ,µν(t)〉. The electric current op-
erator is defined by Îα,e = e

∑
σ Îα,µµ, and the spin cur-

rent operator is Îα,s =
∑

µν Îα,µνsµν . We are interested
in the spin current of the sz components tunnelling from
the leads to QD, which is associated with the injection of
currents Iα,↓↓ and Iα,↑↑ from opposite directions, and the
spin current is given by Iz

α,s =
∑

µ Iα,µµsz
µµ. In the central
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QD, spin flip takes place, and the spin generation causes
additional terms in the continuity equation

∂Ŝz
σσ

∂t
=

{
i

�

[
Ω̃σ̄σd†σ̄dσ − Ω̃σσ̄d†σdσ̄

]
+

∑

γ

Îγ,σσ(t)

}
szσσ.

(5)
The notation σ̄ denotes the spin variable by making spin
flipping versus σ, i.e., if dσ represents spin-up electron,
the notation dσ̄ represents spin-down electron. The source
terms can not be cancelled by summing up the spin vari-
able σ in the above equation, and thus the spin cur-
rent is non-conservative in our system. Nevertheless, the
charge current is conserved to satisfy the continuity equa-
tion ∂Q̂/∂t = e

∑
γσ Îγ,σσ(t), where Q̂ = e

∑
σ d†σdσ is

the charge operator of QD. The detailed spin current is
strongly dependent on the structure of concrete system.
We define the Green’s function GX

σσ′ (t, t′) (X ∈ {r, a, <})
of the coupled QD corresponding to the retarded, ad-
vanced and Keldysh Green’s functions [15–17]. The re-
tarded (advanced) Green’s function is defined by

G
r(a)
σσ′ (t, t′) = ∓ i

�
θ(±t ∓ t′)

〈
[dσ(t), d†σ′ (t′)]+

〉
.

The Keldysh Green’s function is defined by

G<
σσ′ (t, t′) =

i

�

〈
d†σ′(t′)dσ(t)

〉
.

The notation 〈...〉 represents quantum expectation value
and ensemble average. The spin and charge current
components in the γth lead can be expressed by the
Green’s functions GX

σσ′ (t, t′) and the self-energy matrices
ΣX

γσσ′(t, t′) as

Iγ,µν(t) =
∫

dt1[Gr
νµ(t, t1)Σ<

γ,µν(t1, t)

+ G<
νµ(t, t1)Σa

γ,µν(t1, t) + [G<
µν(t, t1)Σa

γ,νµ(t1, t)

+ Gr
µν(t, t1)Σ<

γ,νµ(t1, t)]∗. (6)

The self-energy of the γth lead is defined by ΣX
γ,µν(t1, t) =∑

k Ṽ ∗
γk,µ(t1)Ṽγk,ν(t)gX

γ,kµ(t1, t), where gX
γk,σ(t1, t), (X ∈

{r, a, <}), is the Green’s function of the γth lead.
In the absence of alternating magnetic field component

as B1 = 0, and without the spin-flip effect, the Green’s
function of the isolated QD in the applied static magnetic
field component B0 is expressed as gr

σσ′(t, t′) = − i
�
Θ(t −

t′) exp[− i
�
εσ(θ)(t−t′)]δσσ′ , where εσ(θ) = Eσ+λσγ0 cos θ.

The energy level of QD is split due to the applied static
Zeeman magnetic field, which is dependent on the tilt an-
gle θ. From the equation of motion, the retarded Green’s
function of electron in QD can be derived to satisfy the
Dyson-like equation

Gr
σσ′ (t, t′) = gr

σσ′ (t, t′)+
∫

dt1g
r
σσ(t, t1)Ω̃σσ̄(t1)Gr

σ̄σ′(t1, t′)

+
∫ ∫

dt1dt2g
r
σσ(t, t1)Σr

σσ(t1, t2)Gr
σσ′ (t2, t′). (7)

The spin-flip effect is contained in the second term of equa-
tion (7) through the interaction strength Ω̃σσ̄(t1), which
does not disappear even if ω0 → 0. Similarly, one can
obtain the Dyson-like equation for the Keldysh Green’s
function. From the equation of motion, and by using the
formulas of Jauho et al. in reference [15], we have the in-
tegral equation

G<
σσ′ (t, t′) =

∫
dt1g

r
σσ(t, t1)Ω̃σσ̄(t1)G<

σ̄σ′(t1, t′)

+
∫ ∫

dt1dt2g
r
σσ(t, t1)[Σr

σσ(t1, t2)G<
σσ′ (t2, t′)

+ Σ<
σσ(t1, t2)Ga

σσ′ (t2, t′)]. (8)

The information of spin-flip effect is contained in the first
term of equation (8) due to the coupling Ω̃σσ̄(t1) stated
in equation (3), which is determined by the nonzero off-
diagonal Green’s functions GX

σ̄σ in spin space. ΣX
σσ′ (t1, t2)

is the total self-energy of leads defined by the summation
of self-energies of leads as ΣX

σσ′(t1, t2) =
∑

γ ΣX
γ,σσ′(t1, t2).

We make Fourier transformation over the two times t,
t′, and solve the time-averaged spin and charge currents.
From equation (7), we obtain the quasi-equilibrium re-
tarded Green’s function of QD

Gr
σσ′ (ε, ε′) = Gr

σσ(ε)[δσσ′δ(ε − ε′) + γ(θ)

×
∑

n

Jn(α1)g̃r
σ̄σ̄(ε̃nσ)δ(ε̃nσ − ε′)δσ̄σ′ ], (9)

where γ(θ) = γ0 sin θ, ε̃nσ = ε − λσ(ω0 + nω)�, (n =
0,±1,±2, ...). The diagonal retarded Green’s function is
related to

Gr
σσ(ε) =

1
ε − εσ(θ) − Πr

σ(ε)
, (10)

where Πr
σ(ε) = Σr

σσ(ε) + γ(θ)2
∑

n J2
n(α1)g̃r

σ̄σ̄(ε̃nσ), and
α1 = 2µ0B1/�ω. The Bessel function of the first
kind Jn(x) is involved in the Green’s functions. We have
defined the Green’s function g̃r

σσ(ε) = 1/[ε − εσ(θ) −
Σr

σσ(ε)]. The first term in equation (9) gives the diag-
onal elements of retarded Green’s function, while the
second term gives the off-diagonal elements of retarded
Green’s function in spin space. Note that the diagonal el-
ements of the retarded Green’s function contain the spin-
flip effect included in Πr

σ(ε) through the term possess-
ing g̃r

σ̄σ̄(ε). This spin-flip term disappears as θ = nπ,
(n = 0,±1,±2, ...). The Zeeman energy induced by the
tilted magnetic field B0 is λσγ0 cos θ, while the spin flip
causes different kind of energy splitting as λσ(ω0 + nω)�
associated with the frequencies of the two fields ω0, and ω.
The local electrons in the QD absorb photons of the rotat-
ing and oscillating magnetic fields. For the rotating field,
only single photon absorption procedure takes place, while
for the oscillating magnetic field, multi-photon absorption
procedure can occur. This also indicates that the rotating
field and the oscillating field contain different characteris-
tics, and they can not be simply cancelled from each other.
Similarly, the quasi-equilibrium Keldysh Green’s function
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of QD can be derived from equation (8) as

G<
σσ′ (ε, ε′) = Gr

σσ(ε)[Σ<
σσ(ε)Ga

σσ′ (ε, ε′) + γ(θ)

×
∑

n

Jn(α1)Σ<
σ̄σ̄(ε̃nσ)g̃r

σ̄σ̄(ε̃nσ)Ga
σ̄σ′(ε̃nσ, ε′)]. (11)

The self-energy ΣX
σσ(ε) in above formulas is defined as

ΣX
σσ(ε) =

∑
γkn | Vγk |2 J2

n(Λ)gX
γ,kσ(ε − n�ω). In the self-

energies of leads, we have defined the Fourier transformed
Green’s functions of leads as g

r(a)
γ,kσ(ε) = 1/[ε− εγ,kσ ± iη],

(η → 0), and g<
γ,kσ(ε) = 2πifγ(ε)δ(ε − εγ,kσ). The Fermi

distribution function of the γth lead is fγ(ε) = 1/{exp[(ε−
µγ)/KBT ] + 1}, where µγ is the chemical potential of
the γth lead, and KB is the Boltzmman constant. The
Keldysh self-energy is given by Σ<

σσ(ε) = i
∑

γn Γγ(ε −
n�ω)J2

n(Λ)fγ(ε − n�ω), where Γγ(ε) = 2π
∑

k | Vγk |2
δ(ε − εγ,kσ) is the line-width of the γth lead. The first
term of Keldysh Green’s function in equation (11) takes
the form of G< = GrΣ<Ga given by Jauho et al. in ref-
erence [15]. However, the second term in equation (11)
also contributes to the diagonal elements of the Keldysh
Green’s function through the off-diagonal elements of
Green’s function Ga

σ̄,σ. The diagonal elements of Keldysh
Green’s function are therefore determined by

G<
σσ(ε) =| Gr

σσ(ε) |2 [
Σ<

σσ(ε) + γ2(θ)

×
∑

n

J2
n(α1)Σ<

σ̄σ̄(ε̃nσ) | gr
σ̄σ̄(ε̃nσ) |2 ]

. (12)

The Zeeman splitting, photon absorption, and spin-flip
effect contain in the Green’s functions above.

Making Fourier transformation over the current equa-
tion (6), and substituting the Fourier transformed self-
energy matrices into it, we can derive the current formula
in Fourier space. We are interested in the time-averaged
tunnelling current, and only consider the diagonal current
Iγ,σσ in spin space, since it is associated with experiments.
Thus, we obtain the time-averaged diagonal elements of
current formula of the γth lead in spin space

Iγ,σσ = − 2
h

Im

∫
dε

∑

n

J2
n(Λ)Γγ(ε − n�ω)

×
[
fγ(ε − n�ω)Gr

σσ(ε) +
1
2
G<

σσ(ε)
]

, (13)

where Gr
σσ(ε), and G<

σσ(ε) are the diagonal elements
of retarded and Keldysh Green’s functions given by
equations (10) and (12). We have used the notation
GX

σσ(ε, ε′) = GX
σσ(ε)δ(ε − ε′) for the diagonal Green’s

functions. Since the diagonal elements of the Green’s
functions are determined by the off-diagonal elements of
Green’s functions in spin space, this current formula con-
tains the information of spin-flip effect as θ �= nπ, (n =
0,±1,±2, ...). In the wide-band limit, the line-widths of
leads are energy-independent Γγ . The retarded self-energy
is determined by the imaginary part Σr

σσ(ε) = −iΓ/2,
where Γ = ΓL + ΓR. The charge current of the γth lead

is the summation of spin-up and spin-down current com-
ponents Iγ,e = e(Iγ,↑↑ + Iγ,↓↓), and the sz spin current
is defined by Iγ,s = �(Iγ,↓↓ − Iγ,↑↑)/2 corresponding to
the notation of spin-up ↑ and spin-down ↓. Substituting
the corresponding Green’s functions into the current for-
mula (13), we obtain the diagonal elements of current as
Iγ,σσ = I

(1)
γ,σσ + I

(2)
γ,σσ. The first part of current is given by

the Landauer-Büttiker-like formula [18,19]

I(1)
γ,σσ =

1
h

∑

n�β

∫
dεTγβσ,n�(ε)[fγ(ε − n�ω) − fβ(ε − ��ω)],

(14)
where Tγβσ,n�(ε) = ΓγΓβJ2

n(Λ)J2
� (Λ) | Gr

σσ(ε) |2 repre-
sents the transmission coefficient of electron with spin σ
transporting from γth lead to the βth lead. The scattering-
matrix approach on phase-coherent transport through a
spin degenerate system was generalized to nonlinear ac
transport by Pedersen and Büttiker [20]. They presented
a theory of photon-assisted electron transport, in which
charge and current conservation are satisfied for all Fourier
components of the current. In equation (14), spin-flip ef-
fect is contained in tunnelling current components through
the Green’s function of QD Gr

σσ(ε). The spin-flip effect
provides novel channels other than the Zeeman splitting
effect. This part of current is conserved as

∑
γσ I

(1)
γ,σσ = 0,

which can be seen directly by changing the indices n and �,
and by employing the symmetry of transmission coefficient
Tγβσ,n�(ε) = Tβγσ,�n(ε). One also observes that this part
of current vanishes as µR = µL. The second part of tun-
nelling current I

(2)
γ,σσ is determined by

I(2)
γ,σσ =

1
h

∑

nm�β

∫
dεJ2

m(α1)Tγβσ,n�(ε) | g̃r
σ̄σ̄(ε̃mσ) |2

× γ(θ)2[fγ(ε − n�ω) − fβ(ε̃mσ − ��ω)]. (15)

The spin current is induced by applying the magnetic
field B to form spin flip, and it is intimately associated
with the photon absorption procedure. As the oscillating
component of magnetic field is zero, the spin current is
generated by the rotating field, and this current becomes
zero as ω0 → 0 [12]. However, one observes that novel
pumping spin current appears due to the oscillating mag-
netic field. The spin current does not disappear even as
ω0 → 0 for θ �= nπ when eV = 0. The mechanism of
this situation comes from the spin-flip effect. As the static
magnetic field (ω0 = 0) is applied to the QD, spin-flip
effect is induced in the local electrons with the interac-
tion strength γ(θ). The applied oscillating magnetic field
then splits the energy level of QD forming side levels for
electrons to tunnel. The pumped electrons with different
spin variable occupy different channels in the QD, and
establish different electron distribution. The asymmetric
electron transport through the system forms nonzero net
current.
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Fig. 1. The spin current in unit Is0 versus phase θ as source-
drain bias eV = 0. The parameters are chosen as �ω0 = 0.1∆,
γ0 = ∆ and for the solid curve Λ = 0.6, �ω = 0.6∆, eVg = ∆;
for the dotted curve eVg = ∆, Λ = 0; for the dashed curve
eVg = 0, Λ = 0.6, �ω = 0.6∆.

3 Numerical calculations

We perform the numerical calculation of spin and charge
currents at zero temperature for both of the cases as
terminal bias eV = 0 and eV �= 0. The energy quantity
∆ = 0.1 meV is used as the energy scale throughout the
calculations. We consider the symmetric system as ΓL =
ΓR = 0.005 meV, and E

(0)
σ = 0. We define the scaling of

spin current as Is0 = ∆/(4π) = 1.59 × 10−2 meV, and
the scaling of charge current by Ic0 = e∆/(4h) = 0.96 nA.
The Fermi distribution function becomes the step function
at zero temperature as fγ(ε) = 1−Θ(ε− µγ). We present
the charge and spin currents of the left lead by calculating
Ie = e(IL,↑↑ + IL,↓↓), and Is = �(IL,↓↓ − IL,↑↑)/2.

Figure 1 displays the spin current versus angle θ as
eV = 0. The spin current varies sensitively with the ap-
plied rotating and oscillating magnetic field components.
As the oscillating field B1 is zero, the spin current oscil-
lates periodically with the period π, and the oscillating
shape is similar to sin2 θ. As the oscillating magnetic field
is applied, the magnitude and shape of the spin current
are affected by the magnitude and frequency ω of the oscil-
lating field, which can be observed from the dashed curve.
The spin current is adjusted by the gate voltage Vg ob-
viously. One sees that the completely different oscillation
structure appears as the gate bias changes from eVg = 0
to eVg = ∆.

The spin current resonance versus gate voltage in the
absence of source-drain bias is presented in Figure 2 to
exhibit the modification of spin current by the oscillat-
ing magnetic field component. In the absence of external
oscillating field, two resonant peaks are observed to be
located at eVg = ±∆, which is already stated in the spin-
pumping system [12], and the spin-precessing system [11].
However, as the oscillating field is applied to the system,
the resonant structure is modified considerably. The mod-

Fig. 2. The spin current in unit Is0 versus gate voltage as
source-drain bias eV = 0. The parameters are chosen as �ω0 =
0.1∆, γ0 = ∆, and θ = π/3. The solid curve is related to Λ = 0;
the dotted curve is related to Λ = 0.6, �ω = 0.3∆; the dashed
curve is related to Λ = 0.6, �ω = 0.6∆.

Fig. 3. The spin current in unit Is0 versus photon energy hν0

of rotating field as source-drain bias eV = 0. The parameters
are chosen as eVg = ∆,γ0 = ∆, θ = π/3, and for the dotted
curve Λ = 0; for the solid curve Λ = 0.6, �ω = 0.6∆; for the
dashed curve Λ = 0.6, �ω = 0.3∆.

ification of spin current is sensitively associated with the
frequency of the applied oscillating field. As the frequency
ω = 0.6∆/�, a large main resonant peak emerges, and
several small side peaks are mounted on the main peak.
As ω = 0.3∆/�, the spin current is relatively small, and
the current structure is quite different compared with the
others.

Figure 3 displays the spin current versus photon en-
ergy of the rotating magnetic field hν0,(ω0 = 2πν0).
The photon energy is scaled by ∆. This corresponds to
the case that the frequency is scaled by the quantity
∆/h = 24.1 GHz. In the absence of oscillating magnetic
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Fig. 4. The spin current in unit Is0 versus photon energy hν
of the oscillating field as eVg = ∆, γ0 = ∆, and eV = 0.
The parameters are chosen as µ0B1 = 0.36∆, and for the solid
curve �ω0 = 0.5∆, θ = π/3; for the dashed curve �ω0 = 0.5∆,
θ = π/4; for the dotted curve �ω0 = 0.3∆, θ = π/3.

Fig. 5. The charge current-voltage characteristics in unit Ic0

for the charge current. The parameters are chosen as �ω0 =
0.1∆, θ = π/3, γ0 = ∆, and eVg = 0. The dashed, dotted
curves correspond to �ω = 0.6∆, 0.3∆ as Λ = 0.6; the solid
curve corresponds to Λ = 0, respectively.

field, one observes that the spin current increases rapidly
with the frequency to reach its maximum value at ν0 =
∆/h, and then declines monotonically [12]. The nonzero
pumped spin current by the oscillating field as ω0 = 0 is
explicitly displayed. The modified and suppressed spin
current signifies the spin-photon absorption effect.

The spin current versus the photon energy of the os-
cillating field hν (ω = 2πν) is depicted in Figure 4. The
peak and valley structure appears in the frequency regime
as 0 < ν < 1.5∆/h. As the ν 	 1.5∆/h, the saturate spin
current is achieved.This figure shows that the magnitude
of spin current is intimately determined by the parame-
ters θ, and ω0. The peak and valley structure keeps by

Fig. 6. The spin current in unit Is0/4 versus source-drain
bias eV . The parameters are chosen as eVg = 0, θ = π/3, �ω0 =
0.1∆, Λ = 0.6,∆ = γ0, and for the solid curve �ω = 0.6∆; for
the dashed curve �ω = 0.3∆; for the dotted curve �ω = 0.4∆;
for the dash-dotted curve �ω = 0.5∆.

changing the parameters θ, and ω0, and it comes from the
competition of spin-up and spin-down current parts with
respect to the frequency ω.

We present the charge current-voltage characteristics
in Figure 5 to show the photon-assisted tunnelling and
spin-flip effect by changing the source-drain bias eV . The
charge current is contributed by the two parts shown in
equations (14) and (15). As the magnitude B1 of oscil-
lating magnetic field approaches zero, two distinct steps
appear at eV = ±∆. This denotes that the single level of
quantum dot is split to form double levels, and the gap
between the two levels is Eg = 2∆, which can be seen
from solid curve directly. This situation indicates that the
normal metal QD changes to semiconducting QD with
energy gap Eg. As the oscillating magnetic field is ap-
plied to QD, the charge current is modified due to pho-
ton absorption and emission. The spin-flip effect, Zeeman
effect, and photon-assisted tunnelling devote together to
the charge current. The energy gap Eg disappears due to
the electron absorbing photons to form novel channels for
electrons to tunnel. This behavior becomes stronger as the
frequency of oscillating magnetic field is larger.

The spin current-voltage characteristics are exhibited
in Figure 6 to display the influence of the source-drain
bias and oscillating magnetic field. As eV �= 0, the spin
current is contributed by both of the two parts given in
equations (14) and (15). The spin current appears quite
differently from the charge current shown in Figure 5. The
spin current is symmetric about eV = 0, and a resonant
peak emerges at eV = 0 for the case as �ω = 0.6∆. The
magnitude of spin current declines with the photon en-
ergy, and several hills are mounted on the curves. The
shape and magnitude of spin current intimately rely on
the photon energy. For example , the spin current ex-
hibits a valley at eV = 0 when the photon energy is small
(dotted curve), but this valley becomes peak when �ω is
large (solid curve). As θ �= nπ, the oscillating magnetic
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Fig. 7. The spin and charge currents versus gate voltage as
eV = 0.5∆. Diagram (a) is the spin current in unit Is0/4, while
diagram (b) is the charge current in unit Ic0. The parameters
are chosen as θ = π/3, Λ = 0.6, �ω0 = 0.1∆, and ∆ = γ0.
The solid and dotted curves are related to �ω = 0.6∆, 0.3∆,
respectively.

field acts as a photon-electron pump, and the photon en-
ergy induces the additional photon bias to generate spin
current. The magnitude of generated spin current is de-
pendent on the photon energy. On the other hand, the
photon absorption also induces multi-levels for electron to
tunnel through QD, and the positions of photon-induced
channels are completely dependent on the photon energy.
Therefore, the photon-assisted resonant transport and
spin-flip effect determine the mesoscopic spin transport
together.

The gate voltage controls charge and spin currents by
tuning eVg, which shows symmetric behavior with respect
to the gate voltage at zero source-drain bias (Fig. 2). As
comparison, we present the charge and spin currents ver-
sus gate voltage in Figure 7 for the case of eV �= 0. One
observes that the spin current displays quite different ap-
pearance from the case where eV = 0. The symmetric
spin current disappears to form asymmetric spin current
with a negative valley located around −∆, and a posi-
tive plateau emerging at around ∆ for the case of pho-
ton energy �ω = 0.3∆ (dotted curve). When the pho-
ton energy becomes larger as �ω = 0.6∆, the positive
plateau becomes wider, and several small peaks emerge
on the plateau. This asymmetric behavior comes from the
fact that as eV �= 0, the spin current is contributed by
both of the two terms I

(1)
γ,σσ and I

(2)
γ,σσ. The competition

of the two terms results in net spin current. The photon-
absorption in such system produces asymmetric side-band
due to the spin-flip effect, which also induces the asym-
metric spin current. We depict the charge current versus
gate voltage for eV �= 0 in diagram (b) to see the spin-
flip charge transport. We observe that double resonant
positive peaks appear around eV ≈ ±∆ as �ω = 0.3∆
(dotted curve). The asymmetric resonant structure is also
exhibited in the charge current versus gate voltage. As the

Fig. 8. The spin and charge currents versus Zeeman en-
ergy µB0 at different source-drain biases. Diagram (a) is the
charge current in unit Ic0, while diagram (b) is the spin cur-
rent in unit Is0/4. The parameters are chosen as θ = π/3, Λ =
0.6, �ω0 = 0.1∆, eVg = 0, and �ω = ∆. The solid, dashed,
and dotted curves are related to eV = 0.5∆, eV = 0.3∆, and
eV = 0, respectively.

photon energy becomes larger, the asymmetric behavior
becomes stronger. The reason for the asymmetric behav-
ior of charge current is the same as that of spin current
given above.

In Figure 8, we show the spin and charge currents ver-
sus the static Zeeman energy µB0 for different source-
drain biases. The photon energy �ω = ∆ is taken as the
energy scale in this figure. Double resonant structure ap-
pears in both of the spin and charge currents with the
resonant peaks located at µB0 ≈ 1.5 ∆, 2.8 ∆. The reso-
nances of the two currents possess similar structures, but
the detailed behaviors are different. Firstly, the spin cur-
rent is zero as µB0 = 0, and then it increases to a resonant
peak at µB0 ≈ 1.5 ∆. But for the charge current, it can
not be zero as µB0 = 0 for eV �= 0. This means that
the charge current is mainly determined by the source-
drain bias and photon energy in the absence of spin-flip
source γ(θ). The charge current for this case is contributed
by I

(1)
γ,σσ completely, while the spin current is contributed

by the term I
(2)
γ,σσ completely as eV = 0. Secondly, The res-

onant peaks of charge current are fatter than those of spin
current. This indicates that the spin current is affected by
Zeeman field B0 more sensitively than that of the charge
current. The resonant values of charge current are larger
with respect to larger source-drain bias voltage, while the
spin current does not possess this behavior. The peak of
zero biased current (dotted curve) can be larger than the
source-drain biased ones (solid and dashed curves). This
behavior also displays in Figure 6, which shows that the
value of spin current decreases with increasing the abso-
lute value of source-drain voltage V .
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4 Concluding remarks

The spin flip of QD is the major source of the spin cur-
rent. The frequencies ω0, ω are transferred to spin and
charge currents. The Zeeman effect is contributed by the
rotating and oscillating magnetic fields, and it is impor-
tant as the magnetic fields are strong. The tilt angle θ of
the rotating field governs the appearance of spin current
which is zero as θ = nπ. The oscillating magnetic field
takes significant role in the spin and charge currents, and
it modifies the spin and charge currents to show quite dif-
ferent behaviors. The spin current can be generated by
the oscillating magnetic field as ω0 → 0. This system pro-
vides a model of device for obtaining spin current by rotat-
ing and oscillating magnetic fields. Spin current displays
quite different appearance between the cases for eV = 0
and eV �= 0. The photon absorption induces multi-levels
for electron to tunnel through QD, and the positions of
photon-induced channels are completely dependent on the
photon energy. The symmetric spin current disappears to
form asymmetric spin current with a negative valley and a
positive plateau. The charge current is mainly determined
by the source-drain bias and photon energy in the absence
of spin-flip. In the presence of spin-flip, the charge current
is composed of source-drain driven current, the photon-
assisted tunnelling, and generated spin-flip electron cur-
rent. The spin current is affected by Zeeman field B0 more
sensitively than that of the charge current. The resonant
values of charge current is larger with respect to larger
source-drain bias voltage. Since the system is controlled
by the external parameters as gate voltage, source-drain
bias, rotating and oscillating magnetic fields, this system
can be employed as an ac spin current generator, or an ac
charge-spin FET.
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20. M.H. Pedersen, M. Büttiker, Phys. Rev. B 58, 12993

(1998)


